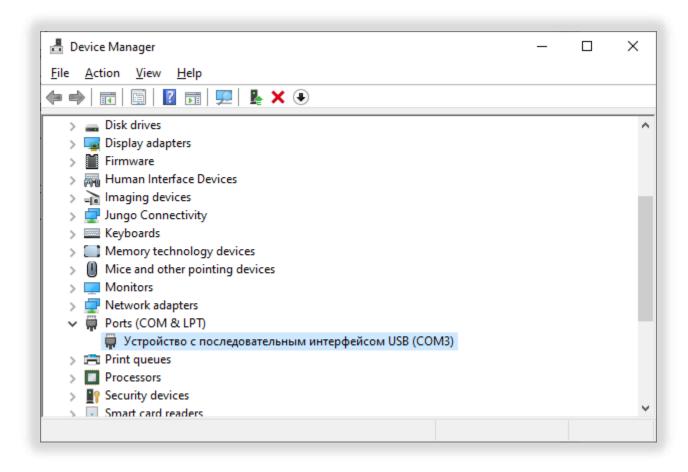


BMS Main X 2.x

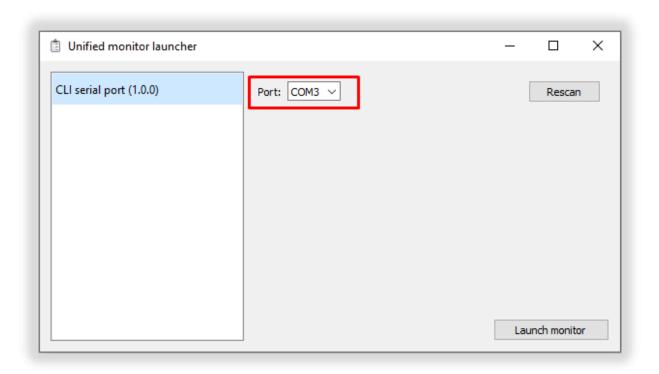
Руководство по настройке

Оглавление

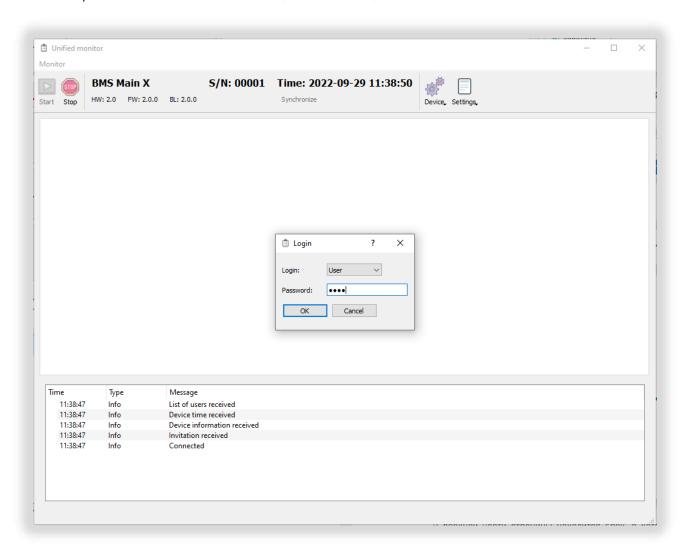

1	Общі	ие положения	3
2	Наст	ройка устройства	7
	2.1 Bx	оды и выходы устройства	7
	2.1.1	Дискретные входы	7
	2.1.2	Дискретные выходы	8
	2.1.3	Реле	9
	2.2	Параметры управления	9
	2.2.1	Батарейные модули	9
	2.2.2	Расчёт параметров батареи	10
	2.2.3	Заряд батареи	11
	2.2.4	Разряд батареи	14
	2.2.5	Контактор заряда/разряда	17
	2.2.6	Балансировка батарейных модулей	18
	2.3	Параметры защиты	19
	2.3.1	Вскрытие крышки батареи	19
	2.3.2	Нарушение изоляции	20
	2.3.3	Обратная связь от контакторов	21
	2.3.4	Потеря связи с батарейными модулями	22
	2.3.5	Разбалансировка батарейных модулей по напряжению	23
	2.3.6	Разбалансировка батарейных модулей по току	24
	2.3.7	Отличающиеся токи заряда батарейных модулей	25
	2.3.8	Отличающиеся токи разряда батарейных модулей	26
	2.3.9	Критическая ошибка	27
	2.4	Внешнее оборудование	27
	2.4.1	Транспортное средство БКМ	28
	2.4.2	Транспортное средство (протокол J1939)	28
	2.4.3	Транспортное средство Evocargo	29

	2.5	Коммуникационные интерфейсы	29	
	2.5.1	CAN (external)	29	
	2.5.2	CAN (internal)	30	
	2.5.3	3 Modbus (RS-485)	.31	
	2.5.4	Wi-Fi	.31	
	2.6	Сервисные функции	32	
	2.6.1	. Пользовательские настройки	32	
	2.6.2	2 Логирование на SD-карту	32	
	2.6.3	В Отправка лог-файлов на удалённый FTP-сервер	33	
	2.6.4	Ж урнал ошибок	34	
3	З Состояние устройства			
	3.1 C	игналы устройства	35	
	3.2	Батарея	36	
	3.3	Батарейные модули	39	
	3.4	Имитация ошибок	. 41	
	3.5	Внешнее оборудование	42	
	3.5.1	. Транспортное средство БКМ	42	
	3.5.2	2 Транспортное средство (протокол J1939)	43	
	3.5.3	З Транспортное средство Evocargo	43	
	3.6	Коммуникационные интерфейсы	45	
	3.6.1	. Wi-Fi	45	
4	Кон	ітактная информация	46	
5	Лис	ст изменений	.47	

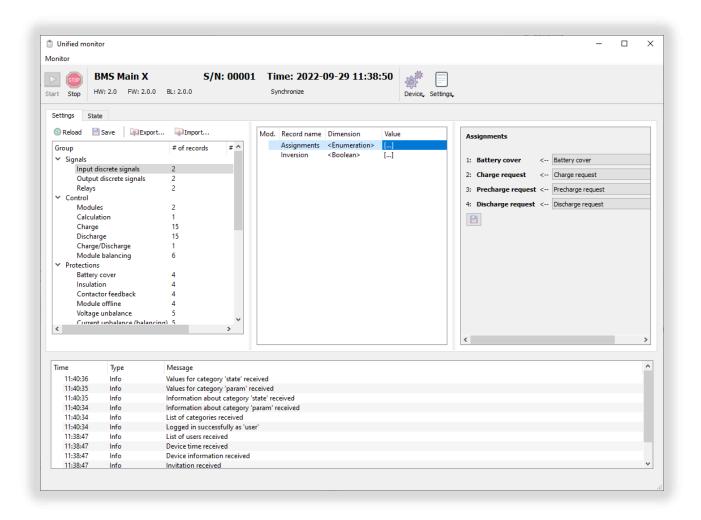

1 Общие положения


Настоящий документ описывает порядок настройки устройства BMS Main X 2.x. Настройка осуществляется по шине USB с помощью программы ElectricDeviceMonitor версии не ниже 1.17.0 (доступна по ссылке).

Для подключения устройства BMS Main X 2.х к ПК используется кабель USB-miniUSB (разъём X2). После подключения устройство идентифицируется как устройство с последовательным интерфейсом (СОМ-порт), например, как на рисунке ниже:



Для соединения с устройством необходимо запустить ElectricDeviceMonitor, выбрать «Unified monitor» в главном окне программы, указать имя СОМ-порта устройства и нажать на кнопку «Launch monitor»:



При подключении устройство запрашивает пароль доступа. Для учётной записи «User» пароль по умолчанию «user» (без кавычек).

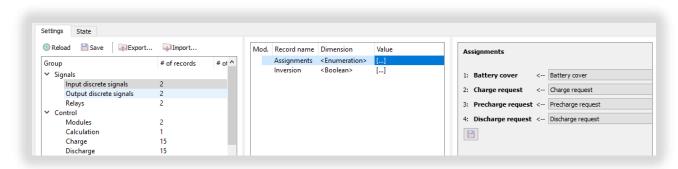
После успешной аутентификации устройство передаст профили настроек и состояний, которые будут отображаться в виде двух вкладок: «Settings» и «State»:

Окно монитора разделено на три области. В верхней области отображаются элементы управления, предназначенные для запуска и останова информационного обмена с устройством, информация об устройстве (название, версия аппаратного и программного обеспечения, время на часах устройства), а также элементы управления для выполнения действий с устройством (изменение пароля, перезапуск, сброс настроек и др.).

В центральное области отображаются параметры и переменные состояния устройства. Вкладки в данной области разделены на три колонки. В первой колонке в древовидной форме отображаются граппы параметров, во второй отображаются записи для выбранной группы, в третьей отображается детальное описание записи.

В нижней области приводится история действий с устройством.

2 Настройка устройства

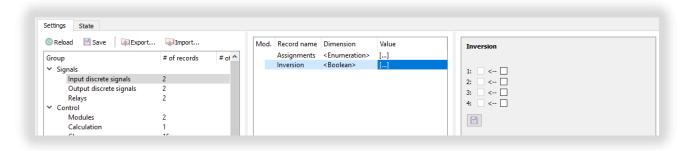

Параметры устройства BMS Main X 2.х сведены во вкладку «Settings» окна «Unified monitor».

2.1 Входы и выходы устройства

2.1.1 Дискретные входы

Устройство BMS Main X 2.х имеет **4 дискретных входа** типа «сухой контакт». Для каждого дискретного входа задаётся его назначение и требование инверсии.

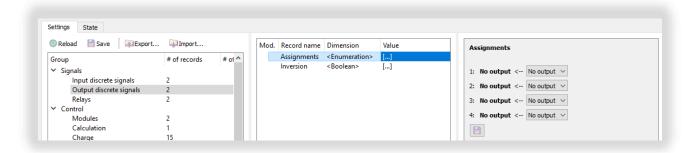
Назначения дискретных входов настраиваются в разделе «Signals – Input discrete signals - Assignments»:



Устройство поддерживает следующие назначения дискретных входов:

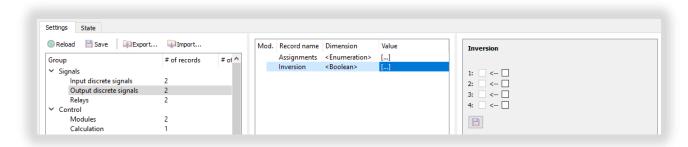
- No input вход не используется;
- Battery cover сигнал от крышки батареи;
- Charge request запрос на замыкание главного контактора заряда;
- Precharge request запрос на замыкание главного контактора предзаряда;
- Discharge request запрос на замыкание главного контактора разряда;
- Charging contactor feedback сигнал обратной связи контактора заряда;
- Discharging contactor feedback сигнал обратной связи контактора разряда;
- Charging/Discharging contactor feedback сигнал обратной связи контактора заряда/разряда;
- Insulation status сигнал от устройства контроля изоляции;
- Join to charge запрос на объединение батарейных модулей для заряда;
- Join to discharge запрос на объединение батарейных моделей для разряда.

Требования инверсии для дискретных входов настраивается в разделе «Signals –


Input discrete signals - Inversion»:

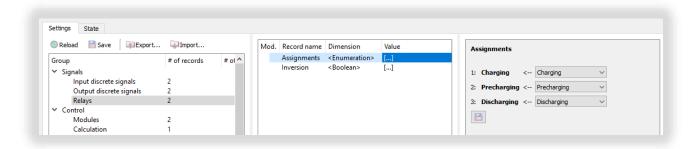
2.1.2 Дискретные выходы

Устройство BMS Main X 2.х имеет **4 дискретных выхода напряжением +5В**. Для каждого дискретного выхода задаётся его назначение и требование инверсии.


Назначения дискретных выходов настраиваются в разделе «Signals – Output discrete signals - Assignments»:

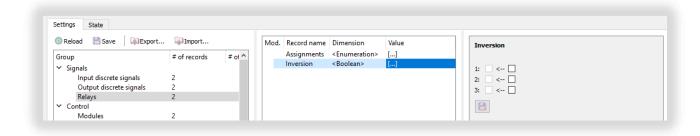
Устройство поддерживает следующие назначения дискретных выходов:

• No output – выход не используется.


Требования инверсии для дискретных выходов настраивается в paзделе «Signals – Output discrete signals - Inversion»:

2.1.3 Реле

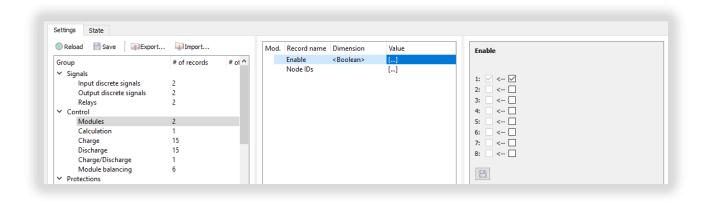
Устройство BMS Main X 2.х имеет **3 оптореле для управления силовыми** контакторами. Для каждого оптореле задаётся его назначение и требование инверсии.


Назначения оптореле настраиваются в разделе «Signals – Relays - Assignments»:

Устройство поддерживает следующие назначения реле:

- No relay реле не используется;
- Charging главное реле заряда;
- Precharging главное реле предзаряда;
- Discharging главного реле разряда;
- Charging/Discharging главное реле заряда/разряда.

Требования инверсии для дискретных входов настраивается в разделе «Signals – Relays - Inversion»:


2.2 Параметры управления

2.2.1 Батарейные модули


Устройство BMS Main X 2.х допускает подключение до 8 батарейных модулей, работающих в параллель.

Флаги для задействования батарейных модулей настраиваются в разделе «Control – Modules - Enable»:

000 «Мовиком Электрик»

Сетевые адреса батарейных модулей настраиваются в разделе «Control – Modules – Node IDs»:

Каждый модуль в батарее должен иметь уникальный адрес. Изменить адрес можно в настройках батарейного модуля в разделе «Connectivity \rightarrow CAN» настроек BMS Main 2.x или BMS Mini S / BMS Mini 2.

2.2.2 Расчёт параметров батареи

Устройство BMS Main X 2.х рассчитывает параметры батареи на основе пользовательских настроек.

Расчёт уровня заряда батареи (SOC) настраивается в разделе «Control - Calculation - Final SOC»:

Поддерживаются следующие способы расчёта SOC батареи:

- Minimum SOC SOC модульной батареи принимается равным минимальному SOC среди батарейных модулей;
- Average SOC SOC модульной батареи принимается равным среднему арифметическому SOC батарейных модулей.

2.2.3 Заряд батареи

Устройство BMS Main X 2.х управляет параллельным соединением батарейных модулей и подключением батареи к зарядной цепи.

Управление зарядом модульной батареи выполняется в одном из следующих режимов:

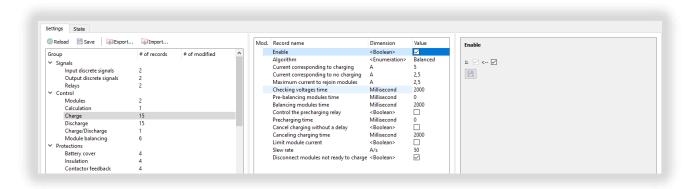
- 1. Заряд разрешён всегда (Always on) устройство игнорирует разбалансировку батарейных модулей по напряжению и току и командует замкнуть контакторы заряда батарейных модулей и главный контактор заряда.
- 2. Заряд разрешён при условии, что все батарейные модули сбалансированы (Balanced).
- 3. Заряд разрешён для большинства сбалансированных батарейных модулей (Partially balanced). Несбалансированные модули отключены от общей шины и не участвуют в заряде.

Устройство управляет двумя процессами: объединением батарейных модулей и замыканием главного контактора заряда.

Работа алгоритма объединения батарейных модулей описана следующими шагами:

1. Батарейные модули отключены. При получении запроса на объединение «Join to charge» и снятых ошибках разбалансировки по напряжению и току («Voltage

- unbalance (CH)», «Current unbalance (CH)», «Charging current unbalance») выполняется переход к шагу 2.
- 2. Проверка разбалансировки батарейных модулей по напряжению (длительность проверки задаётся в настройках). При отсутствии разбалансировки или игнорировании ошибок («Always on» и «Partially balanced») выполняется переход к шагу 3, иначе размыкание всех зарядных контакторов и переход к шагу 1.
- 3. Замыкание контакторов предзаряда батарейных модулей (опционально). Переход к шагу 4.
- 4. Замыкание зарядных контакторов батарейных модулей. Выполняется самобалансировка батарейных модулей. Переход к шагу 5.
- 5. Проверка межмодульных балансировочных токов (длительность проверки задаётся в настройках). При отсутствии разбалансировки по току («Current unbalance (CH)») или игнорировании ошибок («Always on») выполняется переход к шагу 6, иначе размыкание всех зарядных контакторов и переход к шагу 1.
- 6. Батарейные модули объединены. При снятии запроса на объединение («Join to charge») или возникновении ошибок «Charging current unbalance» и «Critical error» переход к шагу 1.


Работа алгоритма управления главным контактором заряда описана следующими шагами:

- 1. Главный зарядный контактор разомкнут. При получении запроса на включение главного контактора («Charge request»), снятых ошибках разбалансировки по напряжению и току («Voltage unbalance (CH)», «Current unbalance (CH)», «Charging current unbalance») и объединённых батарейных модулях выполняется переход к шагу 2.
- 2. Замыкание главного контактора предзаряда (опционально). Переход к шагу 3.
- 3. Замыкание главного контактора заряда (сигнал «Charging»). Переход к шагу 4.
- 4. Главный зарядный контактор замкнут. При снятии запроса на включение («Charge request»), разъединении батарейных модулей или возникновении ошибки «Critical error» переход к шагу 1.

Команда на включение главного контактора заряда (Charging) может выдаваться как системе верхнего уровня по шине CAN (external), так и на оптореле устройства, которое служит для непосредственного управления главным контактором заряда.

Кроме управления зарядными контакторами контроллер заряда рассчитывает и передаёт системе верхнего уровня величину предельного допустимого тока, которым можно заряжать модульную батарею («Charge current limit»). Расчёт зарядного тока всей батареи выполняется исходя из количества работающих на заряд батарейных модулей и передаваемых ими значений предельных токов заряда.

Управление зарядом модульной батареи настраивается в разделе «Control – Charge»:

Здесь:

- Enable флаг включения контроллера заряда батареи;
- Algorithm алгоритм заряда:
 - Always on заряд разрешён всегда;
 - Balanced заряд разрешён при условии, что все батарейные модули сбалансированы;
 - Partially balanced заряд разрешён для большинства сбалансированных батарейных модулей;
- Current corresponding to charging уровень тока для формирования сигнала "Charging current present", A;
- Current corresponding to no charging уровень тока для снятия сигнала "Charging current present", A;
- Maximum current to rejoin modules максимальный допустимый ток, при котором

разрешается выполнить коммутацию батарейных модулей, А;

- Checking voltages time время проверки напряжений батарейных модулей, мс;
- Pre-balancing modules time время предзаряда батарейных модулей, мс;
- Balancing modules time время самобалансировки батарейных модулей, мс;
- Control the precharging relay флаг управления главным контактором предзаряда;
- Precharging time время предзаряда, мс;
- Cancel charging without a delay флаг прекращения заряда без задержки;
- Canceling charging time величина задержки перед размыканием главного контактора заряда, мс;
- Limit charging current флаг, который позволяет ограничивать зарядный ток модульной батареи таким образом, чтобы ток каждого батарейного модуля не превышал его предельно допустимый ток заряда;
- Slew rate скорость изменения уставки предельного зарядного тока модульной батареи при установленном флаге Limit charging current, A/c;
- Disconnect modules not ready to charge флаг размыкания модулей, у которых снят сигнал «Ready to charge».

2.2.4 Разряд батареи

Устройство BMS Main X 2.х управляет параллельным соединением батарейных модулей и подключением батареи к разрядной цепи.

Управление разрядом модульной батареи выполняется в одном из следующих режимов:

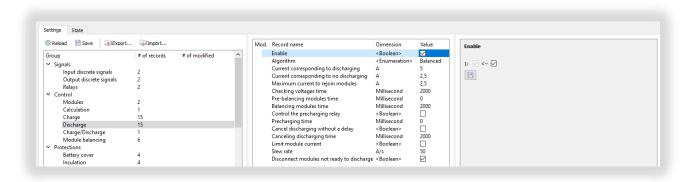
- 1. Разряд разрешён всегда (Always on) устройство игнорирует разбалансировку батарейных модулей по напряжению и току и командует замкнуть контакторы разряда батарейных модулей и главный контактор разряда.
- 2. Разряд разрешён при условии, что все батарейные модули сбалансированы (Balanced).
- 3. Разряд разрешён для большинства сбалансированных батарейных модулей (Partially balanced). Несбалансированные модули отключены от общей шины и не участвуют в разряде.

Устройство управляет двумя процессами: объединением батарейных модулей и

Работа алгоритма объединения батарейных модулей описана следующими шагами:

- 1. Батарейные модули отключены. При получении запроса на объединение «Join to discharge» и снятых ошибках разбалансировки по напряжению и току («Voltage unbalance (DCH)», «Current unbalance (DCH)», «Discharging current unbalance») выполняется переход к шагу 2.
- 2. Проверка разбалансировки батарейных модулей по напряжению (длительность проверки задаётся в настройках). При отсутствии разбалансировки или игнорировании ошибок («Always on» и «Partially balanced») выполняется переход к шагу 3, иначе размыкание всех разрядных контакторов и переход к шагу 1.
- 3. Замыкание контакторов предзаряда батарейных модулей (опционально). Переход к шагу 4.
- 4. Замыкание разрядных контакторов батарейных модулей. Выполняется самобалансировка батарейных модулей. Переход к шагу 5.
- 5. Проверка межмодульных балансировочных токов (длительность проверки задаётся в настройках). При отсутствии разбалансировки по току («Current unbalance (DCH)») или игнорировании ошибок («Always on») выполняется переход к шагу 6, иначе размыкание всех разрядных контакторов и переход к шагу 1.
- 6. Батарейные модули объединены. При снятии запроса на объединение («Join to discharge») или возникновении ошибок «Discharging current unbalance» и «Critical error» переход к шагу 1.

Работа алгоритма управления главным контактором заряда описана следующими шагами:


1. Главный разрядный контактор разомкнут. При получении запроса на включение главного контактора («Discharge request»), снятых ошибках разбалансировки по напряжению и току («Voltage unbalance (DCH)», «Current unbalance (DCH)», «Discharging current unbalance») и объединённых батарейных модулях выполняется переход к шагу 2.

- 2. Замыкание главного контактора предзаряда (опционально). Переход к шагу 3.
- 3. Замыкание главного контактора разряда (сигнал «Discharging»). Переход к шагу 4.
- 4. Главный разрядный контактор замкнут. При снятии запроса на включение («Discharge request»), разъединении батарейных модулей или возникновении ошибки «Critical error» переход к шагу 1.

Команда на включение главного контактора разряда (Discharging) может выдаваться как системе верхнего уровня по шине CAN (external), так и на оптореле устройства, которое служит для непосредственного управления главным контактором разряда.

Кроме управления разрядными контакторами контроллер разряда рассчитывает и передаёт системе верхнего уровня величину предельного допустимого тока, которым можно разряжать модульную батарею («Discharge current limit»). Расчёт разрядного тока всей батареи выполняется исходя из количества работающих на разряд батарейных модулей и передаваемых ими значений предельных токов разряда.

Управление разрядом модульной батареи настраивается в разделе «Control – Discharge»:

Здесь:

- Enable флаг включения контроллера разряда батареи;
- Algorithm алгоритм разряда:
 - o Always on разряд разрешён всегда;
 - Balanced разряд разрешён при условии, что все батарейные модули

сбалансированы;


- Partially balanced разряд разрешён для большинства сбалансированных батарейных модулей;
- Current corresponding to discharging уровень тока для формирования сигнала "Discharging current present", A;
- Current corresponding to no discharging уровень тока для снятия сигнала "Discharging current present", A;
- Maximum current to rejoin modules максимальный допустимый ток, при котором разрешается выполнить коммутацию батарейных модулей, А;
- Checking voltages time время проверки напряжений батарейных модулей, мс;
- Pre-balancing modules time время предзаряда батарейных модулей, мс;
- Balancing modules time время самобалансировки батарейных модулей, мс;
- Control the precharging relay флаг управления главным контактором предзаряда;
- Precharging time время предзаряда, мс;
- Cancel discharging without a delay флаг прекращения разряда без задержки;
- Canceling discharging time величина задержки перед размыканием главного контактора разряда, мс;
- Limit module current флаг, который позволяет ограничивать разрядный ток модульной батареи таким образом, чтобы ток каждого батарейного модуля не превышал его предельно допустимый ток разряда;
- Slew rate скорость изменения уставки предельного разрядного тока модульной батареи при установленном флаге Limit module current, A/c;
- Disconnect modules not ready to discharge флаг размыкания модулей, у которых снят сигнал «Ready to discharge».

2.2.5 Контактор заряда/разряда

Устройство BMS Main X 2.х способно управлять контактором заряда/разряда, который используется как для заряда, так и для разряда батареи.

На контактор заряда/разряда («Charging/Discharging») выдаётся сигнал «Charging» (формируется контроллером заряда), если от системы верхнего уровня получен сигнал «Charge request». Во всех других случаях, на контактор выдаётся сигнал «Discharging» (формируется контроллером разряда).

Управление контактором заряда/разряда настраивается в разделе «Control – Charge/Discharge»:

Здесь:

• Enable – флаг включения контроллера заряда/разряда.

2.2.6 Балансировка батарейных модулей

Устройство BMS Main X 2.х поддерживает активную балансировку батарейных модулей как в процессе заряда, так и в процессе разряда батареи.

При заряде батареи балансировка выполняется путём отключения от общей шины наиболее заряженных батарейных модулей. Перед отключением модулей BMS Main X 2.х передаёт системе верхнего уровня (зарядному устройству) требование уменьшить ток заряда до нуля, а после пропадания тока отключает наиболее заряженные батарейные модули.

При разряде батареи балансировка выполняется путём отключения от общей шины наиболее разряженных батарейных модулей. Отключение батарейных модулей выполняется только в том случае, если ток разряда батареи снизился до пороговой величины, задаваемой в настройках устройства.

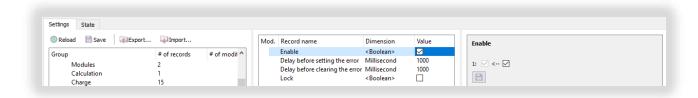
Управление балансировкой батарейных модулей настраивается в разделе «Control – Module balancing»:

Здесь:

- Balance on charging флаг разрешения балансировки модулей при заряде батареи;
- Delta voltage разница напряжений батарейных модулей, при которой

выполняется отключение наиболее заряженных модулей (отключаются те модули, напряжение которых превышает минимальное напряжение среди модулей на величину «Delta voltage»), В;

- Delta current разница токов заряда, при которой выполняется отключение наиболее заряженных модулей (отключаются те модули, ток заряда которых меньше максимального тока заряда среди модулей на величину «Delta current»), А;
- Waiting time время нахождения батарейных модулей в отключенном состоянии (по истечение данного времени ранее отключенные в процессе балансировки модули повторно подключаются к общей шине), с;
- Balance on discharging флаг разрешения балансировки модулей при разряде батареи;
- Required discharging current величина тока разряда, при которой устройство выполнит отключение наиболее разряженных батарейных модулей, А.


2.3 Параметры защиты

Устройство BMS Main X 2.х контролирует модули, входящие в батарею, сравнивает напряжения и токи модулей и защищает батарею от повреждения.

2.3.1 Вскрытие крышки батареи

Устройство BMS Main X 2.х детектирует вскрытие крышки батареи и выполняет защитное размыкание силовых контакторов.

Защита от вскрытия крышки батареи настраивается в разделе «Protections – Battery cover»:

Здесь:

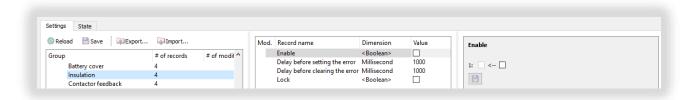
- Enable флаг включения защиты;
- Delay before setting the error задержка перед формированием ошибки, с;

- Delay before clearing the error задержка перед снятием ошибки, с;
- Lock флаг блокирования ошибки до перезапуска устройства.

В результате срабатывания защиты от вскрытия крышки батареи формируется ошибка «Battery cover». Условия формирования ошибки:

• наличие сигнала «Battery cover» в течение времени «Delay before setting the error».

Условия снятия ошибки:


• отсутствие сигнала «Battery cover» в течение времени «Delay before clearing the error».

При наличии ошибки «Battery cover» формируется флаг критической ошибки и все контакторы батареи размыкаются.

2.3.2 Нарушение изоляции

Устройство BMS Main X 2.х детектирует сигнал от внешнего устройства мониторинга сопротивления изоляции (например, Bender IR155) и выполняет защитное размыкание силовых контакторов.

Защита от нарушения изоляции настраивается в разделе «Protections – Insulation»:

Здесь:

- Enable флаг включения защиты;
- Delay before setting the error задержка перед формированием ошибки, с;
- Delay before clearing the error задержка перед снятием ошибки, с;
- Lock флаг блокирования ошибки до перезапуска устройства.

В результате срабатывания защиты от нарушения изоляции формируется ошибка «Insulation fault». Условия формирования ошибки:

• наличие сигнала «Insulation status» в течение времени «Delay before setting the

error».

Условия снятия ошибки:

• отсутствие сигнала «Insulation status» в течение времени «Delay before clearing the error».

При наличии ошибки «Insulation fault» формируется флаг критической ошибки и все контакторы батареи размыкаются.

2.3.3 Обратная связь от контакторов

Устройство BMS Main X 2.х детектирует сигналы обратной связи от силовых контакторов и в случае расхождения сигналов обратной связи от сигналов управления выполняет защитное размыкание силовых контакторов.

Защита от сбоев в работе контакторов настраивается в разделе «Protections – Contactor feedback»:

Здесь:

- Enable флаг включения защиты;
- Delay before setting the error задержка перед формированием ошибки, с;
- Delay before clearing the error задержка перед снятием ошибки, с;
- Lock флаг блокирования ошибки до перезапуска устройства.

В результате срабатывания защиты от сбоев контакторов формируются ошибки «СН contactor feedback error», «DCH contactor feedback error», «СН/DCH contactor feedback error». Условия формирования ошибки:

• сигнал обратной связи от контактора отличается от сигнала управления контактором в течение времени «Delay before setting the error».

Условия снятия ошибки:


• сигнал обратной связи от контактора повторяет сигнал управления контактором в течение времени «Delay before clearing the error».

При наличии ошибки «CH contactor feedback error», «DCH contactor feedback error», «CH/DCH contactor feedback error» формируется флаг критической ошибки и все контакторы батареи размыкаются.

2.3.4 Потеря связи с батарейными модулями

Устройство BMS Main X 2.х детектирует пропадание связи с батарейными модулями и выполняет защитное размыкание силовых контакторов.

Защита от потери связи с батарейными модулями настраивается в разделе «Protections – Module offline»:

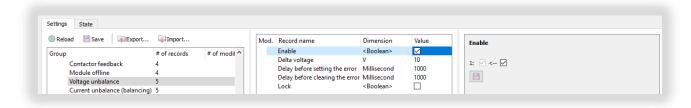
Здесь:

- Enable флаг включения защиты;
- Delay before setting the error задержка перед формированием ошибки, с;
- Delay before clearing the error задержка перед снятием ошибки, с;
- Lock флаг блокирования ошибки до перезапуска устройства.

В результате срабатывания защиты от потери связи с батарейным модулем формируется ошибка "Module offline". Условия формирования ошибки:

• хотя бы один из батарейных модулей не отвечает на команды в течение времени «Delay before setting the error».

Условия снятия ошибки:


• все батарейные модули отвечают на команды в течение времени «Delay before clearing the error».

При наличии ошибки «Module offline» формируется флаг критической ошибки и все контакторы батареи размыкаются.

2.3.5 Разбалансировка батарейных модулей по напряжению

Перед замыканием контакторов заряда и разряда батарейных модулей устройство BMS Main X 2.х выявляет те модули, напряжение которых существенно отличается от остальных. Для разбалансированных модулей формируются ошибки «Voltage unbalance (CH)» (цепь заряда) и «Voltage unbalance (DCH)» (цепь разряда).

Защита от разбалансировки батарейных модулей настраивается в разделе «Protections – Voltage unbalance»:

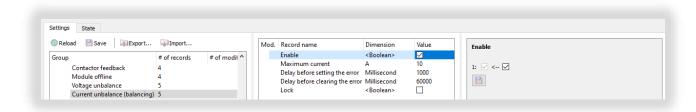
Здесь:

- Enable флаг включения защиты;
- Delta voltage максимально допустимая разница напряжений батарейных модулей, B;
- Delay before setting the error задержка перед формированием ошибки, мс;
- Delay before clearing the error задержка перед снятием ошибки, мс;
- Lock флаг блокирования ошибки до перезапуска устройства.

В результате срабатывания защиты от разбалансировки по напряжению для разбалансированных модулей формируются ошибки «Voltage unbalance (CH)» или «Voltage unbalance (DCH)». Условия формирования ошибки:

• батарейный модуль не входит в самую большую группу модулей, напряжения которых отличаются друг от друга не более чем на величину «Delta voltage», в течение времени «Delay before setting the error».

Условия снятия ошибки:


• батарейный модуль входит в самую большую группу сбалансированных модулей в течение времени «Delay before clearing the error».

При наличии ошибки «Voltage unbalance (CH)» («Voltage unbalance (DCH)») размыкается контактор заряда (разряда) батарейного модуля.

2.3.6 Разбалансировка батарейных модулей по току

При параллельном включении батарейных модулей наиболее заряженные модули отдают заряд наименее заряженным модулям. Процесс переноса заряда сопровождается протеканием балансирующих токов. Устройство BMS Main X 2.х выявляет модули с высокими токами балансировки и формирует для них ошибки «Current unbalance (CH)» (цепь заряда) и «Current unbalance (DCH)» (цепь разряда).

Защита от разбалансировки батарейных модулей настраивается в разделе «Protections – Current unbalance»:

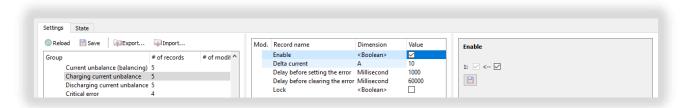
Здесь:

- Enable флаг включения защиты;
- Maximum current максимально допустимый ток самобалансировки батарейных модулей, А;
- Delay before setting the error задержка перед формированием ошибки, мс;
- Delay before clearing the error задержка перед снятием ошибки, мс;
- Lock флаг блокирования ошибки до перезапуска устройства.

В результате срабатывания защиты от высокого тока самобалансировки для разбалансированных модулей формируются ошибки «Current unbalance (CH)» или «Current unbalance (DCH)». Условия формирования ошибки:

• ток батарейного модуля превышает величину «Maximum current» в течение времени «Delay before setting the error».

Условия снятия ошибки:


• ток батарейного модуля меньше величины «Maximum current» в течение времени «Delay before clearing the error».

При наличии ошибки «Current unbalance (CH)» («Current unbalance (DCH)»)

2.3.7 Отличающиеся токи заряда батарейных модулей

В процессе заряда батареи токи батарейных модулей могут отличаться. Устройство BMS Main X 2.х выявляет модули, токи заряда которых значительно отличаются от токов остальных модулей, и формирует для них ошибки «Charging current unbalance».

Защита от отличающихся токов заряда настраивается в разделе «Protections – Charging current unbalance»:

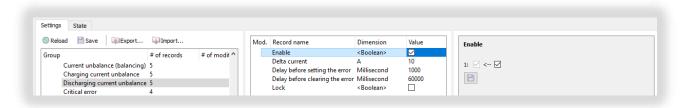
Здесь:

- Enable флаг включения защиты;
- Delta current максимально допустимая разница токов заряда, А;
- Delay before setting the error задержка перед формированием ошибки, мс;
- Delay before clearing the error задержка перед снятием ошибки, мс;
- Lock флаг блокирования ошибки до перезапуска устройства.

В результате срабатывания защиты для батарейных модулей формируются ошибки «Charging current unbalance». Условия формирования ошибки:

• батарейный модуль не входит в самую большую группу модулей, токи заряда которых отличаются друг от друга не более чем на величину «Delta current», в течение времени «Delay before setting the error».

Условия для снятия ошибки:


• батарейный модуль входит в самую большую группу модулей с близкими по значению токами заряда в течение времени «Delay before clearing the error».

При наличии ошибки «Charging current unbalance» размыкается контактор заряда батарейного модуля.

2.3.8 Отличающиеся токи разряда батарейных модулей

В процессе работы батареи на нагрузку токи батарейных модулей могут отличаться. Устройство BMS Main X 2.х выявляет модули, токи разряда которых значительно отличаются от токов остальных модулей, и формирует для них ошибки «Discharging current unbalance».

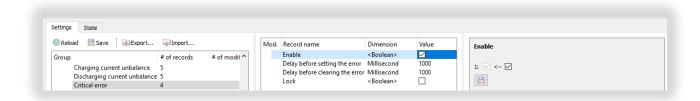
Защита от отличающихся токов разряда настраивается в разделе «Protections – Discharging current unbalance»:

Здесь:

- Enable флаг включения защиты;
- Delta current максимально допустимая разница токов разряда, А;
- Delay before setting the error задержка перед формированием ошибки, мс;
- Delay before clearing the error задержка перед снятием ошибки, мс;
- Lock флаг блокирования ошибки до перезапуска устройства.

В результате срабатывания защиты для батарейных модулей формируются ошибки «Discharging current unbalance». Условия формирования ошибки:

• батарейный модуль не входит в самую большую группу модулей, токи разряда которых отличаются друг от друга не более чем на величину «Delta current», в течение времени «Delay before setting the error».


Условия для снятия ошибки:

• батарейный модуль входит в самую большую группу модулей с близкими по значению токами разряда в течение времени «Delay before clearing the error».

При наличии ошибки «Discharging current unbalance» размыкается контактор разряда батарейного модуля.

2.3.9 Критическая ошибка

Параметры формирования критической ошибки настраиваются в разделе «Protections – Critical error»:

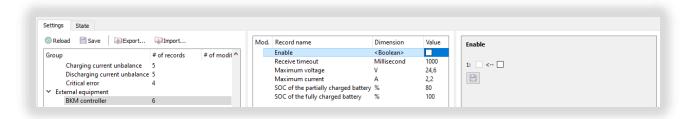
Здесь:

- Enable флаг включения защиты;
- Delay before setting the error задержка перед формированием ошибки, мс;
- Delay before clearing the error задержка перед снятием ошибки, мс;
- Lock флаг блокирования ошибки до перезапуска устройства.

Флаг критической ошибки формируется если в течение времени «Delay before setting the error» сохраняется хотя бы одна из следующих ошибок:

- «Battery cover»;
- «Insulation fault»;
- «CH contactor feedback error»;
- «DCH contactor feedback error»;
- «CH/DCH contactor feedback error»;
- «Module offline».

Флаг критической ошибки снимается если в течение времени «Delay before clearing the error» нет ни одной ошибки из списка выше.

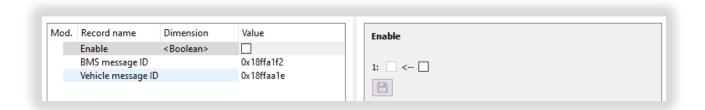

При наличии флага критической ошибки все контакторы батареи размыкаются.

2.4 Внешнее оборудование

Устройство BMS Main 2.х поддерживает совместную работу с контроллерами транспортных средств.

2.4.1 Транспортное средство БКМ

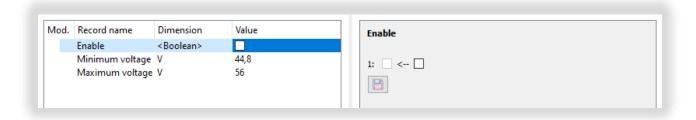
Параметры связи с контроллером БКМ настраиваются в разделе «External equipment – BKM controller»:


Здесь:

- Enable флаг разрешения работы с контроллером БКМ;
- Receive timeout таймаут приёма пакетов от контроллера (если в течение данного времени от контроллера БКМ не поступает данных, то выставляется флаг потери связи), мс;
- Maximum voltage максимальное напряжение заряда, В;
- Maximum current максимальный ток заряда, А;
- SOC of the partially charger battery уровень заряда частично заряженной батареи, %:
- SOC of the fully charger battery уровень заряда полностью заряженной батареи, %.

2.4.2 Транспортное средство (протокол J1939)

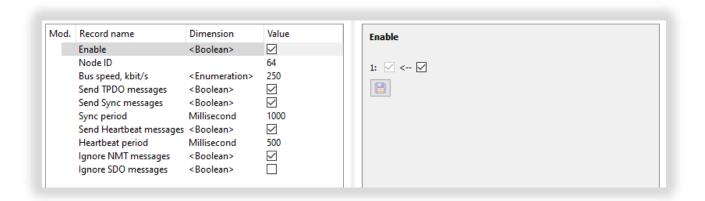
Базовый протокол транспортного средства J1939 является разработкой компании Мовиком Электрик, а его описание доступно по запросу. По данному протоколу может быть получена информация о параметрах модульной батареи. Также в протоколе реализовано управление режимами работы батареи.


Параметры связи по протоколу J1939 настраиваются в разделе «External equipment – Basic J1939 vehicle»:

- Enable флаг разрешения работы по протоколу;
- BMS message ID идентификатор первого сообщения устройства в сети J1939;
- Vehicle Message ID идентификатор командного сообщения от системы верхнего уровня.

2.4.3 Транспортное средство Evocargo

Параметры связи с оборудованием компании Evocargo настраивается в разделе «External equipment - Evocargo»:

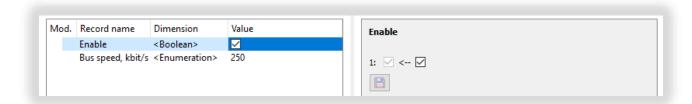

Здесь:

- Enable флаг разрешения работы с оборудованием Evocargo;
- Minimum voltage минимальное напряжение батареи, В;
- Maximum voltage максимальное напряжение батареи, В.

2.5 Коммуникационные интерфейсы

2.5.1 CAN (external)

Для изменения параметров подключения к внешней шине CAN, предназначенной для настройки устройства и взаимодействия с системой верхнего уровня, необходимо выбрать раздел «Connectivity – CAN (external)»:

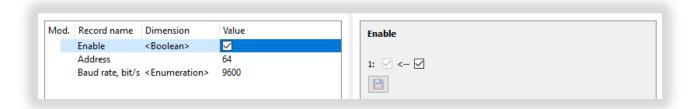


- Enable флаг разрешения работы приёмопередатчика CAN;
- Node ID идентификатор устройства в сети CANopen;
- Bus speed скорость обмена по шине CAN;
- Send TPDO messages отправка сообщений TPDO на каждый пакет синхронизации Sync;
- Send Sync messages включение отправки пакетов синхронизации (CANID = 0x80, длина данных 0 байт);
- Sync period период отправки пакетов синхронизации, мс;
- Send Heartbeat messages включение отправки Heartbeat-сообщений;
- Heartbeat period период отправки Heartbeat-сообщений, мс;
- Ignore NMT messages игнорирование командных сообщений сети CANopen;
- Ignore SDO messages игнорирование протокола SDO в сети CANopen.

После изменения настроек необходим перезапуск устройства BMS Main X 2.х.

2.5.2 CAN (internal)

Для изменения параметров подключения к шине CAN, предназначенной для взаимодействия с батарейными модулями на основе BMS Main 2.x или BMS Mini S / BMS Mini 2, необходимо выбрать раздел «Connectivity – CAN (internal)»:



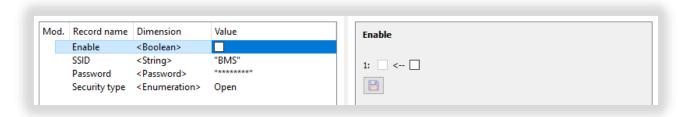
- Enable флаг разрешения работы приёмопередатчика CAN;
- Bus speed скорость обмена по шине CAN.

2.5.3 Modbus (RS-485)

Устройство BMS Main X 2.х поддерживает работу по протоколу Modbus RTU по шине RS-485.

Для изменения параметров подключения к шине RS-485 необходимо выбрать раздел «Connectivity – Modbus (RS-485)»:

Здесь:


- Enable флаг разрешения работы приёмопередатчика RS-485;
- Address сетевой адрес устройства;
- Baud rate скорость обмена по шине RS-485.

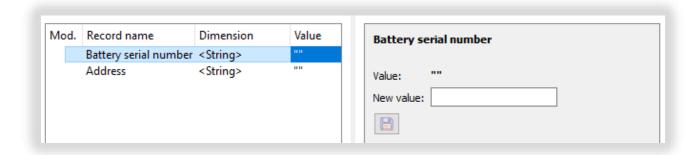
После изменения настроек необходим перезапуск устройства BMS Main X 2.х.

2.5.4 Wi-Fi

С помощью модуля BMS Wi-Fi устройство BMS Main X 2.х поддерживает подключение к сети Wi-Fi.

Для изменения параметров подключения к сети Wi-Fi необходимо выбрать раздел «Connectivity – Wi-Fi»:

Здесь:

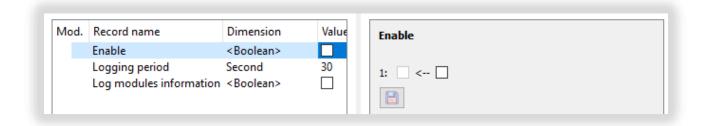

- Enable флаг включения Wi-Fi;
- SSID имя Wi-Fi сети;
- Password пароль для подключения к Wi-Fi сети;
- Security type тип защищённого подключения.

2.6 Сервисные функции

2.6.1 Пользовательские настройки

К пользовательским настройкам относятся серийный номер батареи и адрес нахождения батареи.

Пользовательские настройки доступны в разделе «Service - User settings»:

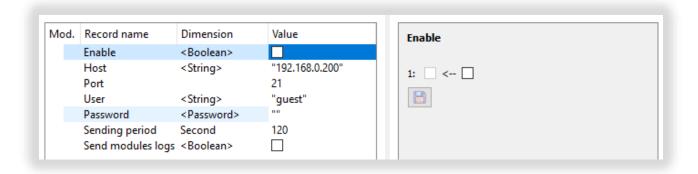

Здесь:

- Battery serial number номер батареи (отображается в лог-файлах);
- Address адрес нахождения батареи.

2.6.2 Логирование на SD-карту

Устройство BMS Main X 2.х поддерживает сохранение состояния батареи и батарейных модулей в виде лог-файлов на SD-карту.

Логирование на SD-карту настраивается в разделе «Service - SD card»:



- Enable флаг включения логирования;
- Logging period период записи логов на SD-карту, с;
- Log modules information флаг включения логирования состояния батарейных модулей.

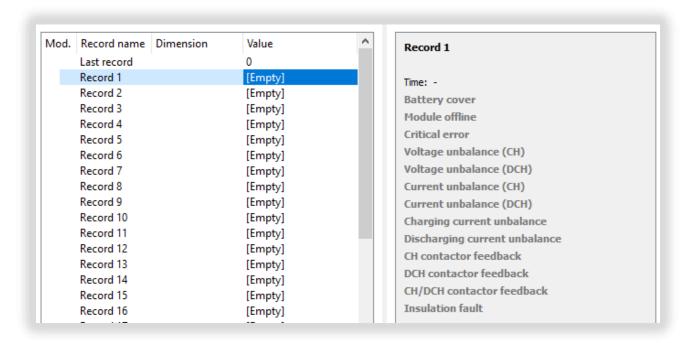
2.6.3 Отправка лог-файлов на удалённый FTP-сервер

Устройство BMS Main X 2.х поддерживает периодическую отправку сохранённых на SD-карту лог-файлов на удалённый FTP-сервер **по сети Wi-Fi**.

Отправка лог-файлов на удалённый FTP-сервер настраивается в разделе «Service – FTP»:

Здесь:

- Enable флаг включения отправки лог-файлов;
- Host имя удалённого хоста, на котором работает FTP-сервер;
- Port номер порта FTP-сервера;
- User имя пользователя FTP-сервера;
- Password пароль пользователя;
- Sending period период подключения к удалённому FTP-серверу;


• Send modules logs – флаг отправки на FTP-сервер данных по всем батарейным модулям.

Устройство сохраняет историю отправленных лог-файлов: для основных лог-файлов файл с историей отправки имеет имя "LOGSENT.TXT", для лог-файлов с данными по батарейным модулям – "MODSENT.TXT".

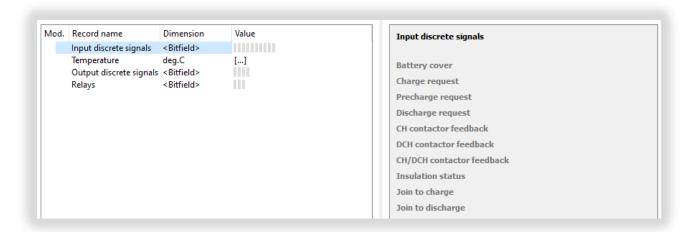
2.6.4 Журнал ошибок

Устройство BMS Main X 2.х ведёт журнал ошибок на 32 записи. Каждая запись хранит метку времени возникновения/пропадания ошибки и флаги ошибок.

Журнал ошибок может быть просмотрен в разделе «Service - Errors journal»:

Здесь:

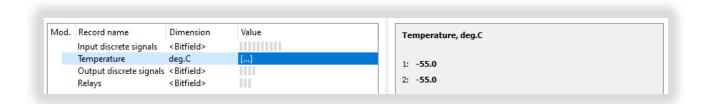
- Last record номер последней записи в журнале ошибок;
- Record 1 ... Record 32 записи в журнале ошибок.


Журнал ошибок является кольцевым: после того, как будут заполнены все 32 позиции, очередная запись будет размещена на позиции 1.

3 Состояние устройства

Состояние устройства BMS Main X 2.х и батарейной системы отображается во вкладке «State» окна «Unified monitor».

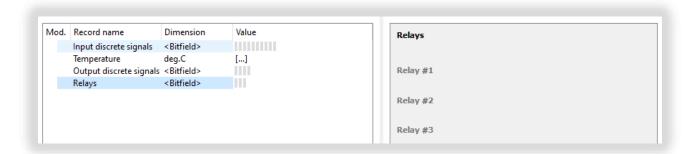
3.1 Сигналы устройства


Состояния дискретных входов устройства доступны в разделе «Signals – Input discrete signals»:

Здесь:

- Battery cover сигнал от крышки батареи;
- Charge request запрос на замыкание главного контактора заряда;
- Precharge request запрос на замыкание главного контактора предзаряда;
- Discharge request запрос на замыкание главного контактора разряда;
- CH contactor feedback сигнал обратной связи от главного контактора заряда;
- DCH contactor feedback сигнал обратной связи от главного контактора разряда;
- CH/DCH contactor feedback сигнал обратной связи от главного контактора заряда/разряда;
- Insulation status сигнал от устройства контроля изоляции;
- Join to charge запрос на объединение батарейных модулей для заряда;
- Join to discharge запрос на объединение батарейных модулей для разряда;

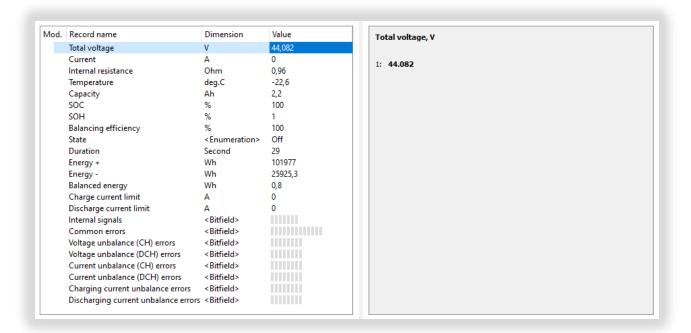
Значения температуры, измеренные двумя датчиками температуры, доступны в разделе «Signals – Temperature»:


Состояния дискретных выходов устройства доступны в разделе «Signals - Output discrete signals»:

Здесь:

• Output #1 - Output #4 - соответственно состояния выходов 1-4 устройства.

Состояния реле устройства доступны в разделе «Signals - Relays»:



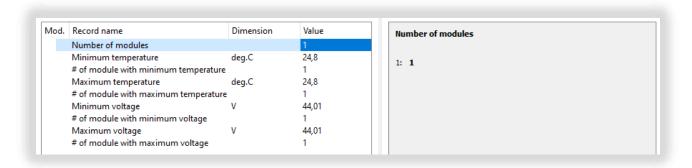
Здесь:

• Relay #1 - Relay #3 - соответственно состояния реле 1-3 устройства.

3.2 Батарея

Параметры батареи сведены в раздел «Battery»:

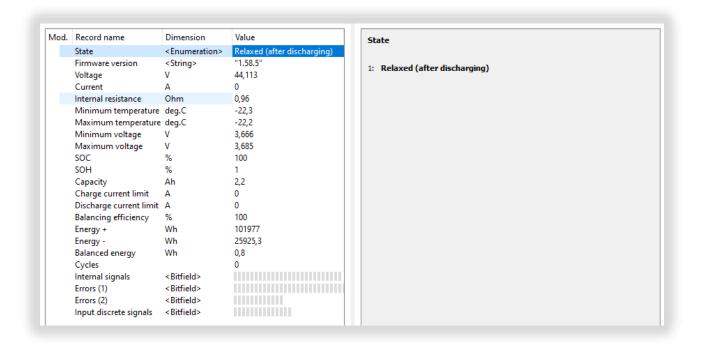
- Total voltage полное напряжение модульной батареи, В;
- Current ток модульной батареи, А;
- Internal resistance внутреннее сопротивление батареи, Ом;
- Тетреrature температура батареи (средняя температура батарейных модулей),
 °C;
- Capacity ёмкость модульной батареи, Ач;
- SOC уровень заряда модульной батареи, %;
- SOH степень работоспособности модульной батареи, %;
- Balancing efficiency эффективность балансировки, %;
- State состояние модульной батареи:
 - Off батарея отключена;
 - o Pre-balancing предзаряд батарейных модулей;
 - Balancing балансировка батарейных модулей;
 - o Precharging предзаряд батареи;
 - Idle простой батареи (ток заряда и разряда не детектируется);
 - Charging заряд модульной батареи;
 - o Discharging разряд модульной батареи;
- Duration длительность нахождения батареи в состоянии «State», с;


- Energy + совокупная энергия полученная батарейными модулями от зарядного устройства и в ходе рекуперации, Втч;
- Energy - совокупная энергия потраченная батарейными модулями на нагрузку,
 Втч;
- Balanced energy совокупная энергия рассеянная батарейными модулями на балансировочных резисторах, Втч;
- Charge current limit предельный ток заряда модульной батареи, А;
- Discharge current limit предельный ток разряда модульной батареи, А;
- Internal signals внутренние сигналы устройства:
 - Init флаг инициализации устройства;
 - Charging состояние главного реле заряда;
 - o Discharging состояние главного реле разряда;
 - Charging current present детектируется ток заряда;
 - o Discharging current present детектируется ток разярад;
 - o Charging/Discharging состояние главного реле заряда/разряда;
 - o Precharging состояние главного реле предзаряда;
- Common errors ошибки модульной батареи:
 - Battery cover открыта крышка батареи;
 - Module offline нет связи с батарейным модулем;
 - o Critical error критическая ошибка;
 - Voltage unbalance (СН) разбаланс по напряжению (цепь заряда);
 - Voltage unbalance (DCH) разбаланс по напряжению (цепь разряда);
 - \circ Current unbalance (CH) разбаланс по току (цепь заряда);
 - o Current unbalance (DCH) разбаланс по току (цепь разряда);
 - Charging current unbalance разные токи заряда батарейных модулей;
 - Discharging current unbalance разные токи разряда батарейных модулей;
 - CH contactor feedback ошибка обратной связи главного контактора заряда;
 - DCH contactor feedback ошибка обратной связи главного контактора разряда;
 - o CH/DCH contactor feedback ошибка обратной связи главного контактора

заряда/разряда;

- o Insulation fault нарушение изоляции батареи;
- Voltage unbalance (CH) errors ошибки разбалансировки по напряжению (цепь заряда) по каждому батарейному модулю;
- Voltage unbalance (DCH) errors ошибки разбалансировки по напряжению (цепь разряда) по каждому батарейному модулю;
- Current unbalance (CH) errors ошибки разбалансировки по току (цепь заряда) по каждому батарейному модулю;
- Current unbalance (DCH) errors ошибки разбалансировки по току (цепь разряда) по каждому батарейному модулю;
- Charging current unbalance errors ошибки при разных токах заряда по каждому батарейному модулю;
- Discharging current unbalance errors ошибки при разных токах разряда по каждому батарейному модулю.

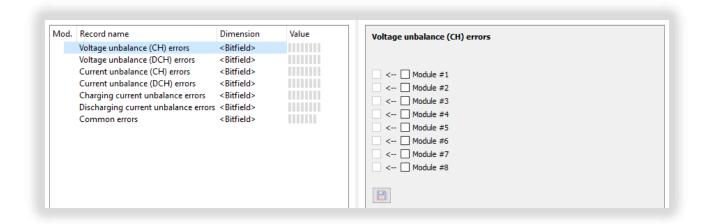
3.3 Батарейные модули


Сводная информация по батарейным модулям находится в разделе «Modules»:

- Number of modules количество батарейных модулей, обнаруженных устройством;
- Minimum temperature минимальная температура среди батарейных модулей, °C;
- # of module with minimum temperature номер модуля, имеющий минимальную температуру;
- Maximum temperature максимальная температура среди батарейных модулей,
 °C;

- # of module with maximum temperature номер модуля, имеющий максимальную температуру;
- Minimum voltage минимальное напряжение среди батарейных модулей, В;
- # of module with minimum voltage номер модуля, имеющий минимальное напряжение;
- Maximum voltage максимальное напряжение среди батарейных модулей, В;
- # of module with maximum voltage номер модуля, имеющий максимальное напряжение.

Детальная информация по каждому модулю находится в разделах «Modules – Module #1» - «Modules – Module #8»:



- State состояние батарейного модуля:
 - o Discharging ON разряд модуля;
 - o Discharging OFF нет разряда модуля;
 - o Relaxed (after discharging) модуль в состоянии релаксации после разряда;
 - o Charing ON заряд модуля;
 - Charging OFF нет заряда модуля;

- o Relaxed (after charging) модуль в состоянии релаксации после заряда;
- Firmware version версия встроенного ПО;
- Voltage напряжение модуля, В;
- Current ток модуля, A;
- Internal resistance внутреннее сопротивление модуля, Ом;
- Minimum temperature минимальная температура среди ячеек, °C;
- Maximum temperature максимальная температура среди ячеек, °C;
- Minimum voltage минимальное напряжение среди ячеек, В;
- Maximum voltage максимальное напряжение среди ячеек, В;
- SOC уровень заряда модуля, %;
- SOH степень работоспособности модуля, %;
- Capacity ёмкость модуля, Ач;
- Charge current limit предельный ток заряда модуля, А;
- Discharge current limit предельный ток разряда модуля, А;
- Balancing efficiency эффективность балансировки ячеек, %;
- Energy + энергия полученная модулем от зарядного устройства и в ходе рекуперации, Втч;
- Energy - энергия потраченная модулем на нагрузку, Втч;
- Balanced energy энергия рассеянная модулем на балансировочных резисторах, Втч;
- Cycles количество циклов заряда-разряда на 80% SOC;
- Internal signals внутренние сигналы модуля (см. руководство по настройке BMS Main 2.x);
- Errors (1), Errors (2) регистры с ошибками модуля (см. руководство по настройке BMS Main 2.x);
- Input discrete signals входные дискретные сигналы модуля (см. руководство по настройке BMS Main 2.x).

3.4 Имитация ошибок

Имитация ошибок устройства осуществляется в разделе «Error simulation»:

- Voltage unbalance (CH) errors имитация ошибок разбалансировки по напряжению (цепь заряда);
- Voltage unbalance (CH) errors имитация ошибок разбалансировки по напряжению (цепь разряда);
- Current unbalance (CH) errors имитация ошибок разбалансировки по току (цепь заряда);
- Current unbalance (DCH) errors имитация ошибок разбалансировки по току (цепь разряда);
- Charging current unbalance errors имитация ошибок различия токов заряда;
- Discharging current unbalance errors имитация ошибок различия токов разряда;
- Common errors имитация ошибок устройства.

3.5 Внешнее оборудование

Информация о состоянии внешнего оборудования находится в разделе «External equipment».

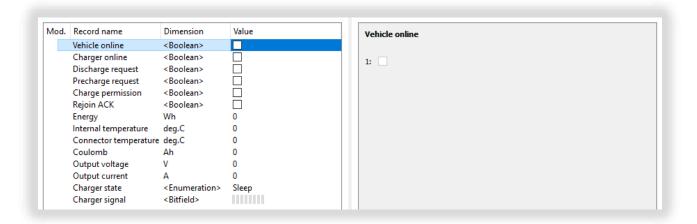
3.5.1 Транспортное средство БКМ

Информация о состоянии связи с контроллером БКМ доступна в разделе «External equipment – BKM controller»:

- Charger online флаг наличия связи с зарядным устройством транспортного средства;
- Vehicle online флаг наличия связи с контроллером транспортного средства.

3.5.2 Транспортное средство (протокол J1939)

Информация о состоянии информационного обмена с транспортным средством по протоколу J1939 доступна в разделе «External equipment – Basic J1939 vehicle»:

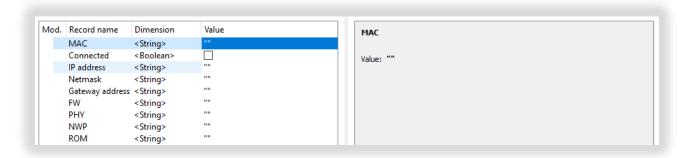


Здесь:

• Vehicle online – флаг наличия связи с контроллером транспортного средства.

3.5.3 Транспортное средство Evocargo

Информация о состоянии информационного обмена с транспортным средством Evocargo доступна в разделе «External equipment – Evocargo vehicle»:



- Vehicle online флаг наличия связи с контроллером транспортного средства;
- Charger online флаг наличия связи с зарядным устройством транспортного средства;
- Discharge request флаг запроса на включение контактора разряда;
- Precharge request флаг запроса на включение контактора предразряда;
- Charge permission флаг подтверждения заряда батареи;
- Rejoin ACK флаг подтверждения перекоммутации батарейных модулей;
- Energy счётчик энергии зарядного устройства, Втч;
- Internal temperature внутренняя температура зарядного устройства, °C;
- Connector temperature температура зарядного разъёма, °C;
- Coulomb заряд, переданный зарядным устройством, Ач;
- Output voltage напряжение, выдаваемое зарядным устройством, В;
- Output current ток, выдаваемый зарядным устройством, А;
- Charger state состояние зарядного устройства:
 - o Sleep сон;
 - Wakeup пробуждение;
 - Standby нет активности;
 - о Ready to charge готовность начать заряд;
 - Charge заряд батареи;
 - Shutdown отключено (произошла ошибка);
- Charger signal сигналы от зарядного устройства:
 - Warning предупреждение о нарушениях в работе;
 - Error внутренняя ошибка;
 - Enabled включен;
 - Wakeup пробужден;
 - AC detected обнаружено подключение к сети переменного тока;
 - o Connector locked зарядный разъём заблокирован;
 - o Pilot signal detected детектируется пилот-сигнал;
 - o Proximity signal detected детектируется подключение зарядного устройства к зарядному разъёму.

3.6 Коммуникационные интерфейсы

3.6.1 Wi-Fi

Информация о состоянии подключения к сети Wi-Fi находится в разделе «Connectivity – Wi-Fi»:

- MAC адрес MAC модуля BMS Wi-Fi;
- Connected флаг подключения к сети Wi-Fi;
- IP address адрес IP модуля BMS Wi-Fi;
- Netmask сетевая маска модуля BMS Wi-Fi;
- Gateway address адрес IP шлюза в сети Wi-Fi;
- FW, PHY, NWP, ROM версии встроенного ПО модуля BMS Wi-Fi.

4 Контактная информация

000 «Мовиком Электрик»

117246, Россия, Москва, пр. Андропова д. 22

+7 (495) 989-56-47

<u>electric@movicom.com</u> movicomelectric.com

5 Лист изменений

Номер редакции	Дата редакции	Изменения
1	03-Октябрь-2022	Первая редакция