

BMS Main X 2.x

Устройство контроля и управления модульной аккумуляторной батареей

РУКОВОДСТВО ПО ПОДКЛЮЧЕНИЮ

Оглавление

1 Описание устройства				3	
	1.1	1.1 Основные функции			
	1.2	Tex	нические характеристики	5	
	1.3	Тип	овая структура батарейной системы	6	
	1.4	Правила безопасности			
2	Подн	Подключение устройства			
	2.1	Раз	ъёмы устройства	7	
	2.1.	1	X1 - разъём питания	7	
	2.1.	2	X2 - разъём USB	7	
	2.1.	3	X3 – разъём интерфейса CAN (INT) для связи с батарейными модулями	8	
	2.1.	4	X4 – разъём интерфейса RS-485 для связи с внешним оборудованием	8	
	2.1.	5	J1 – джампер для подключения терминального резистора к шине RS-485	8	
	2.1.	6	X5 – разъём интерфейса CAN (EXT) для настройки устройства и связи с внешн	им	
06	борудо	зани	ем	9	
	2.1.	7	J2 – джампер для подключения терминального резистора к шине CAN (EXT)	9	
	2.1.	8	Х6 – разъём оптореле	9	
	2.1.	9	Х7 – разъём дискретных входов и выходов	10	
	2.1.	10	Х8 – разъём для подключения датчиков температуры	10	
	2.2	Кре	пление устройства	. 11	
3	Конт	Контактная информация13			
4	Лист изменений документа14				
5	Лпя заметок 15				

1 Описание устройства

BMS Main X – это устройство, которое управляет работой сложной батарейной системы, состоящей из нескольких батарейных модулей. BMS Main X взаимодействует с батарейными модулями на основе BMS Main 2.x и BMS Mini 2.x / BMS Mini S, обеспечивает динамическое подключение батарейных модулей для заряда и работы на нагрузку, рассчитывает и передаёт системе верхнего уровня информацию о состоянии батарейной системы.

Рисунок 1. BMS Main X 2.x

1.1 Основные функции

- Мониторинг батарейных модулей.
- Определение состояния батарейной системы:
 - о Уровень заряда (SOC).
 - о Степень работоспособности (SOH).
 - о Эффективная ёмкость.
- Счётчики энергии (полученной от зарядного устройства, переданной нагрузке и рассеянной на балансировочных резисторах).
- Защита батарейной системы от:
 - о разбалансировки батарейных модулей по напряжению;
 - о протекания высоких межмодульных балансировочных токов;
 - о разбалансировки при заряде батарейных модулей;
 - о разбалансировки при работе батарейных модулей на нагрузку;
 - о и т.д.
- Активная балансировка батарейных модулей при заряде и работе на нагрузку.
- Непрерывное ведение журнала о состоянии батарейной системы и батарейных модулей (сохранение на SD-карту).

• Интерфейсы:

- о USB (для настройки устройства и мониторинга состояния батарейной системы).
- о Wi-Fi или GSM (опционально; WEB-интерфейс для настройки устройства и мониторинга состояния батарейной системы, а также отправка журнала о состоянии батарейной системы на удалённый FTP-сервер).
 - о RS-485 (поддержка протокола Modbus RTU).
- 2хСАN (поддержка протокола CANopen для настройки системы и мониторинга состояния батарейной системы; взаимодействие с внешним оборудованием; взаимодействие с батарейными модулями).

1.2 Технические характеристики

Параметр Значение

Напряжение питания, В	18÷36
Количество подключаемых батарейных модулей	1÷8
Количество подключаемых датчиков температуры	2
Тип подключаемых датчиков температуры	100кОм NTC термистор
Количество оптореле ¹⁾	3
Количество дискретных входов	4
Количество дискретных выходов	4
Количество каналов CAN	2 ²⁾
Скорость обмена по CAN, кбит/с	125, 250 (по умолчанию), 500, 1000
Количество каналов RS-485	1
Скорость обмена по RS-485, бит/с	600, 1200, 2400, 4800, 9600 (по умолчанию), 19200, 38400, 57600, 115200
Скорость обмена по USB 2.0, Мбит/с	12
Потребление тока @24 В, мА, не более	100

Условия эксплуатации

Диапазон рабочих температур, °C	-40÷75

 $^{^{1)}}$ – Оптореле используются для управления контакторами в цепях заряда и разряда.

²⁾ – Один канал CAN используется для связи с батарейными модулями, а другой – для связи с системой верхнего уровня (например, контроллером транспортного средства).

1.3 Типовая структура батарейной системы

На Рисунке 2 изображена типовая батарейная система, состоящая из трёх батарейных модулей.

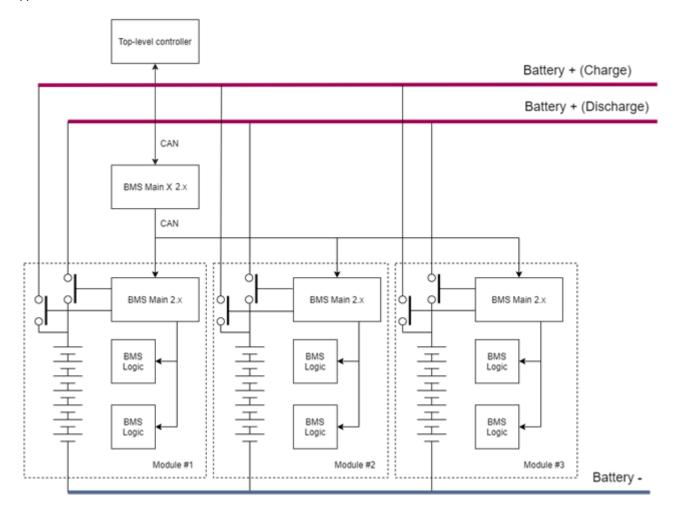


Рисунок 2. Структурная схема типовой батарейной системы

1.4 Правила безопасности

BMS может подключаться к батареям с опасным для жизни и здоровья уровнем напряжения. При работе с батареями высокого напряжения соблюдайте правила электробезопасности, используйте защитные очки, защитную одежду, изолированные инструменты и приборы.

2 Подключение устройства

2.1 Разъёмы устройства

Расположение и обозначение разъемов показано на Рисунке 3.

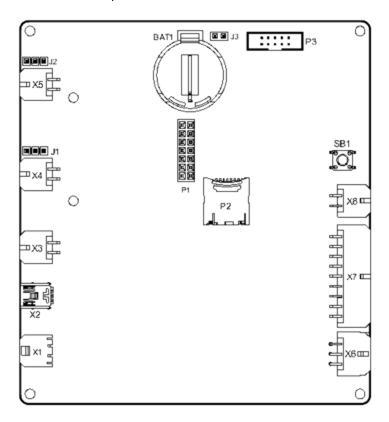


Рисунок 3. Обозначение разъёмов

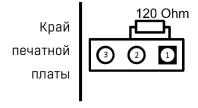
2.1.1 X1 - разъём питания

Контакт	Название	Назначение
1	V+	Линия питания BMS Main X
2	GND	Земля

2.1.2 X2 - разъём USB

2.1.3 X3 – разъём интерфейса CAN (INT) для связи с батарейными модулями

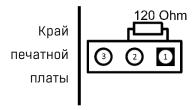
Контакт	Название	Назначение
1	CAN_INT_H	CAN линия Н для связи с батарейными модулями
2	CAN_INT_L	CAN линия L для связи с батарейными модулями
3	CAN_INT_5V	Изолированное питание +5В, не более 200 мА
4	CAN_INT_GND	Изолированная земля

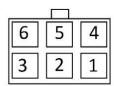

2.1.4 X4 – разъём интерфейса RS-485 для связи с внешним оборудованием

Контакт	Название	Назначение
1	RS485_A	RS-485 линия A для связи с внешним оборудованием
2	RS485_B	RS-485 линия В для связи с внешним оборудованием
3	-	-
4	RS485_GND	Изолированная земля

2.1.5 J1 – джампер для подключения терминального резистора к шине RS-485

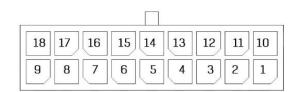
Для подключения терминального резистора между линиями **RS485_A** и **RS485_B** необходимо установить джампер, согласно рисунку:


2.1.6 X5 – разъём интерфейса CAN (EXT) для настройки устройства и связи с внешним оборудованием


Контакт	Название	Назначение
1	CAN_EXT_H	CAN линия Н для связи с внешним оборудованием
2	CAN_EXT_L	CAN линия L для связи с внешним оборудованием
3	CAN_EXT_5V	Изолированное питание +5В, не более 200 мА
4	CAN_EXT_GND	Изолированная земля

2.1.7 J2 – джампер для подключения терминального резистора к шине CAN (EXT)

Для подключения терминального резистора между линиями **CAN_EXT_H** и **CAN_EXT_L** необходимо установить джампер, согласно рисунку:



2.1.8 Х6 – разъём оптореле

Контакт	Название	Назначение
1	NO1	Нормально разомкнутый контакт реле 1
2	N02	Нормально разомкнутый контакт реле 2
3	NO3	Нормально разомкнутый контакт реле 3
4	COM1	Общий контакт реле 1 (макс. напряжение 55B, макс. ток 2A)
5	COM2	Общий контакт реле 2 (макс. напряжение 55B, макс. ток 2A)
6	сомз	Общий контакт реле 3 (макс. напряжение 55B, макс. ток 2A)

2.1.9 Х7 – разъём дискретных входов и выходов

Контакт	Название	Назначение	
1	GND	Дискретный вход 1 типа «сухой контакт» (земля)	
2	GND	Дискретный вход 2 типа «сухой контакт» (земля)	
3	GND	Дискретный вход 3 типа «сухой контакт» (земля)	
4	GND	Дискретный вход 4 типа «сухой контакт» (земля)	
5	-	-	
6	GND	Дискретный выход 1 (земля)	
7	GND	Дискретный выход 2 (земля)	
8	GND	Дискретный выход 3 (земля)	
9	GND	Дискретный выход 4 (земля)	
10	D_IN1	Дискретный вход 1 типа «сухой контакт» (+5B)	
11	D_IN2	Дискретный вход 2 типа «сухой контакт» (+5B)	
12	D_IN3	Дискретный вход 3 типа «сухой контакт» (+5B)	
13	D_IN4	Дискретный вход 4 типа «сухой контакт» (+5B)	
14	-	-	
15	D_OUT1	Дискретный выход 1 (+5 В, 20 мА)	
16	D_OUT2	Дискретный выход 2 (+5 В, 20 мА)	
17	D_OUT3	Дискретный выход 3 (+5 В, 20 мА)	
18	D_OUT4	Дискретный выход 4 (+5 В, 20 мА)	

2.1.10 Х8 – разъём для подключения датчиков температуры

Контакт	Название	Назначение
1	TEMPG1	Подключение земли термистора 1
2	TEMPG2	Подключение земли термистора 2
3	TEMP1	Подключение сигнального выхода термистора 1
4	TEMP2	Подключение сигнального выхода термистора 2

2.2 Крепление устройства

Место крепления устройства должно быть защищено от попадания механических объектов (пыли, грязи, крупных объектов) и воды.

Место крепления должно предполагать удобный доступ к устройству для подключения других элементов батарейной системы: батарейных модулей, термисторов, контакторов.

Габаритные и установочные размеры BMS Main X приведены на Рисунках 6 и 7.

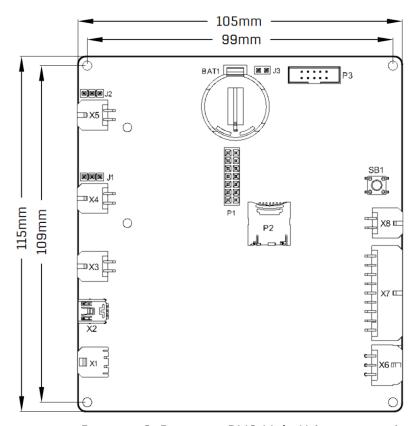


Рисунок 6. Размеры BMS Main X (вид сверху)

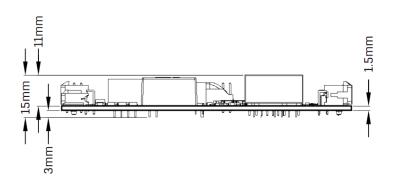


Рисунок 7. Размеры BMS Main X (вид сбоку)

Параметр Значение

Габаритные размеры (длина × ширина × высота), мм	105 × 115 × 15
Установочные размеры (длина × ширина), мм	99 × 109
Установочные отверстия	M3

3 Контактная информация

000 «Мовиком Электрик»

115533, Россия, Москва, пр. Андропова, д.22.

+7 (495) 989-56-47

 $\frac{electric@movicom.com}{movicomelectric.com}$

4 Лист изменений документа

Номер редакции	Дата редакции	Изменения
1	25-Август-2022	Первая редакция

5	э для заметок	