

BMS Mini S 1.1

Централизованная система контроля и управления аккумуляторной батареей

РУКОВОДСТВО ПО ПОДКЛЮЧЕНИЮ

Оглавление

1	Опис	сани	е устройства	3				
	1.1	Осн	овные функции	3				
	1.2	Tex	нические характеристики	5				
	1.3	Тип	рвая структура батарейной системы					
	1.4	Пра	вила безопасности	6				
2	Подн	ключ	іение устройства	7				
	2.1	Раз	ъёмы устройства	7				
	2.1.	1	X1 – разъём для подключения контакторов	7				
	2.1.	2	X2 - разъём mini-USB	8				
	2.1.	.3	ХЗ – разъём для подключения дискретных входов и выходов	8				
	2.1.	4	X4 – разъём внешних изолированных интерфейсов CAN и RS485	9				
	2.1.	.5	X5 – разъём для кнопки включения устройства	10				
	2.1.	6	Х6 – разъём для подключения датчиков температуры ячеек	10				
	2.1.	7	Х7 – разъём для подключения датчика тока	11				
	2.1.	.8	Х8 – разъём для подключения ячеек батареи	11				
	2.1.	9	Х9 – разъём питания устройства	12				
	2.1.	10	J1 – джампер для подключения терминального резистора к шине CAN	12				
	2.1.	11	J2 – джампер для подключения терминального резистора к шине RS-485	12				
	2.2	Пор	ядок подключения	13				
	2.2	.1	Подключение ячеек	13				
	2.2	.2	Подключение термисторов	14				
	2.3	Кре	пление устройства	14				
3	Конт	актн	ная информация	16				
4	Лист	ГИЗМ	иенений документа	17				
5	Лпа	Лпд заметок						

1 Описание устройства

BMS Mini S – это централизованная система, которая обеспечивает мониторинг, пассивную балансировку и защиту составных литий-ионных аккумуляторных батарей. BMS Mini осуществляет измерение напряжений (батареи целиком и каждой ячейки), температуры и тока батареи. Система выполняет балансировку ячеек и защищает их от перегрузок по току, перезаряда, глубокого разряда и перегрева.

Рисунок 1. BMS Mini S 1.1

BMS Mini S ориентирована на использование в батареях с номинальным напряжением 12, 24, 36B.

1.1 Основные функции

- Работа с литий-ионными батареями: LFP (LiFePO₄ и LiFeYPO₄), LCO (LiCoO₂), LMO (LiMn₂O₄), NMC (LiNiMnCoO₂), NCA (LiNiCoAlO₂) и др.
- Возможность настройки под разные типы батарей (уровни напряжения, ёмкость, уровни и задержки срабатывания защиты).
 - Определение состояния батареи:
 - о Уровень заряда (SOC).
 - о Глубина разряда (DOD).
 - о Степень работоспособности (SOH).
 - о Эффективная ёмкость.
 - о Сопротивление каждой ячейки.
 - о Количество циклов заряда-разряда.
 - о Счётчики энергии (полученной от зарядного устройства, переданной нагрузке и

рассеянной на балансировочных резисторах).

- Мониторинг параметров ячеек:
 - о Напряжение на каждой ячейке.
 - о Температура ячеек.
- Контроль тока через батарею (датчик тока на основе эффекта Холла с напряжением питания 5 В).
 - Защита батареи:
 - о Высокий ток.
 - о Глубокий разряд.
 - о Перезаряд.
 - о Перегрев.
 - о Низкая температура.
 - о Управление нагревателем.
 - о Управление охладителем.
 - И Т.Д.
 - Балансировка ячеек (пассивная с током балансировки 220 мА при 4,2В на ячейке).
- Непрерывное ведение журнала о состоянии батареи и системы (сохранение на SD-карту).
 - Интерфейсы:
 - о USB (для настройки системы и мониторинга состояния батареи).
 - ∘ Wi-Fi или GSM (опционально; для настройки системы и мониторинга состояния батареи, а также отправки журнала о состоянии батареи на удалённый FTP-сервер).
 - o RS-485 (поддержка протокола Modbus RTU).
 - о CAN (поддержка протокола CANopen для настройки системы и мониторинга состояния батареи; взаимодействие с внешним оборудованием зарядными устройствами, инверторами, панелями индикации и др.).

1.2 Технические характеристики

Параметр Значение

Поддерживаемые типы химии	LCO, LFP, LMO, NMC, NCA, и др.		
Напряжение питания, В	10÷52		
Количество подключаемых ячеек	4÷12		
Количество подключаемых датчиков температуры	1÷6		
Тип подключаемых датчиков температуры	100кОм NTC термистор		
Количество MOSFET ключей ¹⁾	4		
Количество дискретных входов	4		
Количество дискретных выходов	4		
Тип подключаемого датчика тока	Двунаправленный на эффекте Холла, напряжение питания 5 В (LEM серии HASS, HTFS, DHAB)		
Количество каналов CAN	1		
Скорость обмена по CAN, кбит/с	125, 250 (по умолчанию), 500, 1000		
Количество каналов RS-485	1		
Скорость обмена по RS-485, бит/с	600, 1200, 2400, 4800, 9600 (по умолчанию), 19200, 38400, 57600, 115200		
Скорость обмена по USB 2.0, Мбит/с	12		
Потребляемый ток @36 В, мА, не более: • рабочий (без нагрузки) • в выключенном состоянии	30 0,3		

Условия эксплуатации

Диапазон рабочих температур, °C	-40÷85

¹⁾ – MOSFET ключи используются для управления контакторами в цепях заряда, предзаряда и разряда.

1.3 Типовая структура батарейной системы

На Рисунке 2 изображена типовая батарейная система на базе BMS Mini S.

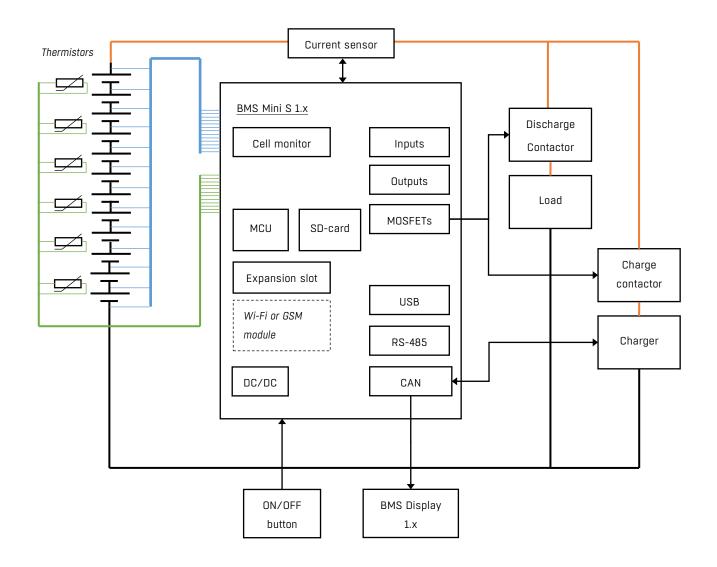


Рисунок 2. Структурная схема типовой батарейной системы

1.4 Правила безопасности

BMS может подключаться к батареям с опасным для жизни и здоровья уровнем напряжения. При работе с батареями высокого напряжения соблюдайте правила электробезопасности, используйте защитные очки, защитную одежду, изолированные инструменты и приборы.

Система не предназначена для работы с батареями, общее напряжение которых более 60 В.

2 Подключение устройства

2.1 Разъёмы устройства

Расположение и обозначение разъемов и переключателей показано на Рисунке 3.

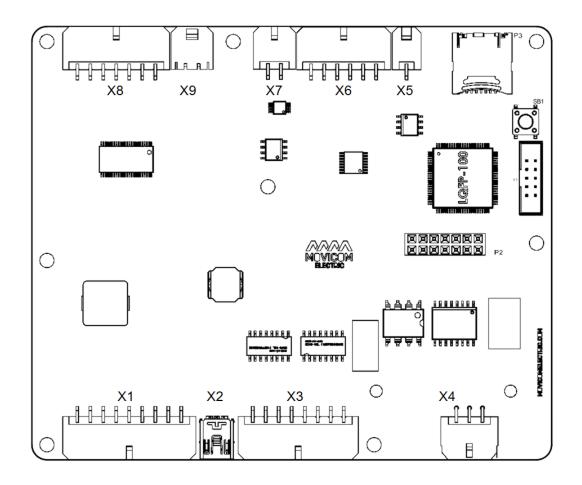
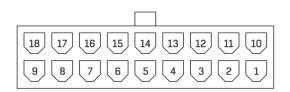
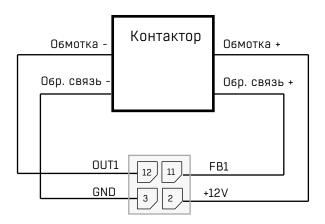
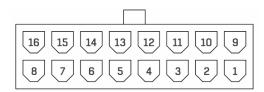



Рисунок 3. Обозначение разъёмов

2.1.1 X1 – разъём для подключения контакторов


контакт	название	назначение
1	-	-
2	+12V	Напряжение источника питания 12В
3	GND	Земля
4	+12V	Напряжение источника питания 12В

7


5	GND	Земля
6	+12V	Напряжение источника питания 12В
7	GND	Земля
8	+12V	Напряжение источника питания 12В
9	GND	Земля
10	-	-
11	FB1	Сигнал обратной связи контактора 1
12	OUT1	Выход на контактор 1 (ключ нижнего уровня), 60В, не более 5А
13	FB2	Сигнал обратной связи контактора 2
14	OUT2	Выход на контактор 2 (ключ нижнего уровня), 60В, не более 5А
15	FB3	Сигнал обратной связи контактора 3
16	OUT3	Выход на контактор 3 (ключ нижнего уровня), 60В, не более 5А
17	FB4	Сигнал обратной связи контактора 4
18	OUT4	Выход на контактор 4 (ключ нижнего уровня), 60В, не более 5А

ВНИМАНИЕ!!!

Сигнал обратной связи контактора подключается между контактами FBx и GND. Нагрузка подключается между контактами +12V и OUTx. Пример подключения контактора к каналу 1 показан на рисунке ниже:

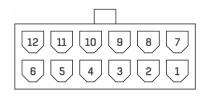
- 2.1.2 X2 разъём mini-USB
- 2.1.3 ХЗ разъём для подключения дискретных входов и выходов

8

Контакт	Название	Назначение
1	DIN1	Дискретный вход 1 типа «сухой контакт» (сигнальный)
2	DIN2	Дискретный вход 2 типа «сухой контакт» (сигнальный)
3	DIN3	Дискретный вход 3 типа «сухой контакт» (сигнальный)
4	DIN4	Дискретный вход 4 типа «сухой контакт» (сигнальный)
5	DOUT1	Дискретный выход 1 (+5 В, 20 мА)
6	DOUT2	Дискретный выход 2 (+5 В, 20 мА)
7	DOUT3	Дискретный выход 3 (+5 В, 20 мА)
8	DOUT4	Дискретный выход 4 (+5 В, 20 мА)
9	GND	Дискретный вход 1 типа «сухой контакт» (земля)
10	GND	Дискретный вход 2 типа «сухой контакт» (земля)
11	GND	Дискретный вход 3 типа «сухой контакт» (земля)
12	GND	Дискретный вход 4 типа «сухой контакт» (земля)
13	GND	Дискретный выход 1 (земля)
14	GND	Дискретный выход 2 (земля)
15	GND	Дискретный выход 3 (земля)
16	GND	Дискретный выход 4 (земля)

2.1.4 X4 - разъём внешних изолированных интерфейсов CAN и RS485

Контакт	Название	Назначение
1	RS485_B	RS-485 линия В для связи с внешним оборудованием
2	+5V	Изолированное питание внешних устройств +5B, не более 400 мА
3	CAN_L	CAN линия L для связи с внешним оборудованием
4	RS485_A	RS-485 линия А для связи с внешним оборудованием


5	GND	Изолированная земля						
6	CAN_H	САN	линия дованием		для	СВЯЗИ	С	внешним

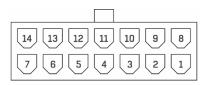
2.1.5 Х5 – разъём для кнопки включения устройства

Контакт	Название	Назначение
1	BTN	Сигнал включения BMS (вход типа «сухой контакт», +3,3B)
2	GND	Сигнал включения BMS (вход типа «сухой контакт», земля)

2.1.6 Х6 – разъём для подключения датчиков температуры ячеек

Контакт Название Назначение

1	TEMPG1	Подключение земли термистора 1
2	TEMPG2	Подключение земли термистора 2
3	TEMPG3	Подключение земли термистора 3
4	TEMPG4	Подключение земли термистора 4
5	TEMPG5	Подключение земли термистора 5
6	TEMPG6	Подключение земли термистора 6
7	TEMP1	Подключение сигнального выхода термистора 1
8	TEMP2	Подключение сигнального выхода термистора 2
9	ТЕМР3	Подключение сигнального выхода термистора 3
10	TEMP4	Подключение сигнального выхода термистора 4


11	TEMP5	Подключение сигнального выхода термистора 5
12	TEMP6	Подключение сигнального выхода термистора 6

2.1.7 Х7 – разъём для подключения датчика тока

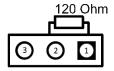
Контакт	Название	Назначение
1	+5V	Напряжение питания датчика тока 5 В, не более 50мА
2	GND	Земля
3	Vin	Вход АЦП (выход датчика тока)
4	Vref	Дополнительный вход АЦП (сигнал уровня нуля датчика тока)

2.1.8 Х8 – разъём для подключения ячеек батареи

Контакт	Название	Назначение			
1	CO	Минус стека ячеек (только для измерения напряжения)			
2	C2	Подключение ячейки 2			
3	C4	Подключение ячейки 4			
4	C6	Подключение ячейки 6			
5	C8	Подключение ячейки 8			
6	C10	Подключение ячейки 10			
7	C12	Подключение ячейки 12 (максимальный потенциал стека ячеек, только для измерения напряжения)			
8	-	-			

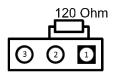
9	C1	Подключение ячейки 1 (минимальный потенциал стека ячеек относительно CO)
10	C3	Подключение ячейки 3
11	C5	Подключение ячейки 5
12	C7	Подключение ячейки 7
13	C9	Подключение ячейки 9
14	C11	Подключение ячейки 11

2.1.9 Х9 – разъём питания устройства



Pin	Name	Description
1	VBAT+	Напряжение питания для BMS Mini S
2	VBAT-	Земля BMS Mini S

Внимание! Устройство BMS Mini S гальванически связано с батареей (минус батареи является землёй устройства). Ввиду этого при подключении к устройству платы BMS Wi-Fi или BMS GSM оплётка антенны также будет гальванически связана с батареей (соединена с её минусом). Рекомендуется изолировать антенный кабель от корпуса батареи для препятствия появления на корпусе минусового потенциала.


2.1.10 J1 – джампер для подключения терминального резистора к шине CAN

Для подключения терминального резистора между линиями **CAN_H** и **CAN_L** необходимо установить джампер, согласно рисунку:

2.1.11 J2 – джампер для подключения терминального резистора к шине RS-485

Для подключения терминального резистора между линиями **RS485_A** и **RS485_B** необходимо установить джампер, согласно рисунку:

2.2 Порядок подключения

2.2.1 Подключение ячеек

При подключении ячеек батареи необходимо руководствоваться схемой на Рисунке 4. Неправильное подключение ячеек может вывести устройство BMS Mini S из строя.

Начинать подключение следует с минуса батареи: "СО" подключается к "В-", далее подключается первая ячейка (С1) батареи, затем вторая (С2) и т.д. Если используются не все входы подключения ячеек, то оставшиеся входы следует соединить между собой и подключить к ячейке, имеющей наибольший потенциал.

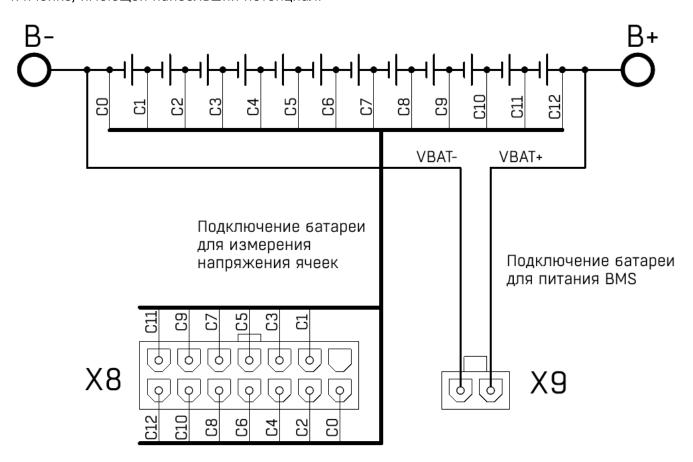


Рисунок 4. Схема подключения батареи к разъемам X8 и X9

Внимание!

Подключать батарею аккумуляторов нужно строго по схеме, в противном случае устройство может выйти из строя

2.2.2 Подключение термисторов

Термисторы следует надежно закрепить на ячейках исключая их замыкание на клеммы ячеек (рекомендуется изолировать термисторы, например, с помощью термоусадочной трубки).

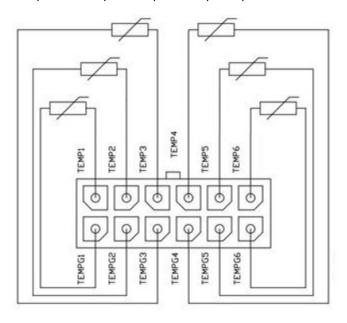


Рисунок 5. Схема подключения термисторов к разъему Х6

2.3 Крепление устройства

Место крепления устройства должно быть защищено от попадания механических объектов (пыли, грязи, крупных объектов) и воды. BMS Mini S рекомендуется располагать вблизи ячеек, которые контролирует устройство, но вдали от цепей высокого тока для уменьшения воздействия электромагнитных помех на измерительные цепи.

Место крепления должно предполагать удобный доступ к устройству для подключения других элементов батарейной системы: датчика тока, контакторов, панелей индикации.

Устройство BMS Mini S имеет радиатор для рассеивания тепла, выделяющегося при балансировке ячеек. При использовании в закрытых корпусах необходимо обеспечить съем тепла с радиатора, в противном случае это может привести к повреждению устройства.

Габаритные и установочные размеры BMS Mini S приведены на Рисунках 6 и 7.

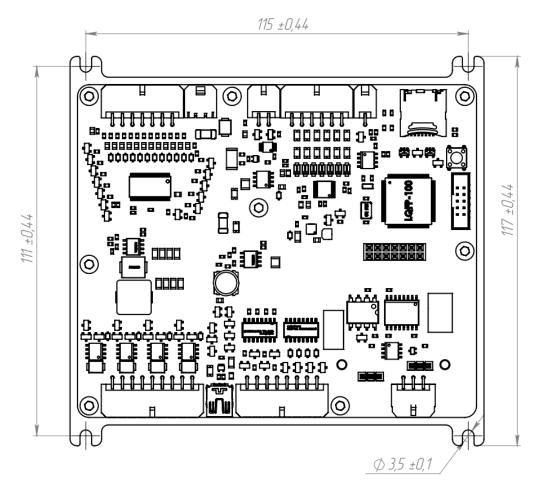


Рисунок 6. Размеры BMS Mini S (вид сверху)

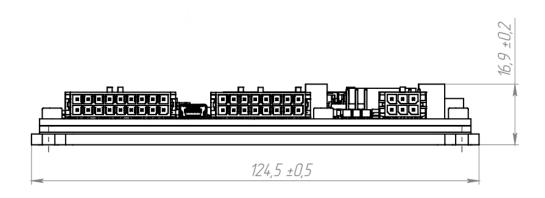


Рисунок 7. Размеры BMS Mini S (вид сбоку)

Параметр	Значение
Габаритные размеры (длина × ширина × высота), мм	124,5 × 117 × 16
Установочные размеры (длина × ширина), мм	115 × 111
Установочные отверстия	M3

3 Контактная информация

000 «Мовиком Электрик»

115533, Россия, Москва, пр. Андропова, д. 22

+7 (495) 989-56-47

electric@movicom.com movicomelectric.com

4 Лист изменений документа

Номер редакции	Дата редакции	Изменения	
1	17-Февраль-2023	Первая редакция	
2	21-Декабрь-2023	Дополнен пункт описания разъёма X9 питания устройства	

5	Для заметок				